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We study a model for the 4 + B — B diffusion-reaction system in one dimension, in which the reaction
sites are modeled by a Markovian stochastic process. Mean values of the A4 particle density are ob-
tained, exactly for “dilute” B systems and approximately for “dense” ones. Results are compared with
numerical simulations and show good agreement in the short-, intermediate-, and long-time regimes.
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I. INTRODUCTION

The study of irreversible bimolecular diffusion-reaction
systems within the diffusion-controlled regime (i.e., when
the reaction time is negligible in comparison with the
diffusion time) has been receiving great interest for well
over a decade. This was motivated by the “anomalous”
kinetic laws that govern the evolution of these chemical
reactions, as, in low-dimensional systems, they depart
from the standard mean-field rate equations [1-17]. Al-
though exact solutions are difficult to obtain, several
asymptotic results for the particle-concentration decay
have been obtained by means of simulations and/or
analytical procedures, through heuristic arguments or by
scaling analysis. So far, the different aspects studied cov-
er the influence of dimensionality, conservation laws,
segregation properties [6,8,10,11], statistics of nearest-
neighbor distances [9,14,15], effects of noise and/or disor-
der [13,17], etc. Some review articles covering these and
other aspects are listed in Ref. [18]. As has been indicat-
ed in almost all references, this process could be used to
model several different physical and chemical systems:
electron trapping and recombination, exciton trapping,
defect recombination, bioenzymatic and membrane reac-
tions, surface catalysis, soliton-antisoliton recombination,
and so forth.

In this article we focus our attention on the extensively
studied 4 + B — B reaction in one dimension. Our aim is
to use this simple reaction as a benchmark in order to in-
troduce an alternative and flexible scheme to study
diffusion-controlled reactions. This scheme, which, as
will be shown, corresponds to the diffusion-controlled
limit, was initially introduced to study neutron-diffusion
problems with absorption by ‘“‘small” (and mobile) ab-
sorbers [19,20].

The main characteristics of this model are as follows.

(i) It naturally includes the possibility of imperfect re-
actions or imperfect trapping [15,21].

1063-651X/93/48(2)/829(8)/$06.00 48

(ii) It is the continuous limit of the corresponding mas-
ter equation usually employed in simulations.

(iii) It is an appropriate framework to obtain analytic,
exact or approximate, results.

(iv) It offers the possibility of analyzing not only the
asymptotic long-time regime, but also the short- and
intermediate-time regimes.

Our interest in the study of the short-time behavior
and the imperfect-trapping problem, in addition to the
natural interests of chemists and material scientists, was
motivated by a recent simulation [21] showing a peculiar
short-time behavior and the effect of a low reaction prob-
ability, as well as by an experimental realization of a
one-dimensional system [22]. Previous results of this
scheme, together with a path-integral approach to it,
have been presented in Ref. [23].

In the present paper we investigate, by means of this
scheme, the behavior of the 4 +B —B reaction in one
dimension, including cases in which only one of the
species (A or B) moves as well as cases in which both
species are mobile. In Sec. II, we present the model for
the case of one trap, its method of solution, and its rela-
tion to simulations as the continuous limit of the associat-
ed master equation. Results for different situations are
compared with simulations. In Sec. III we consider the
case of several traps, considering different orders of ap-
proximation and its comparison with simulations. Final-
ly, a general discussion, including the possibility of ex-
tending this scheme to higher-dimensional systems and
other kind of reactions, is given in Sec. IV.

II. THE SCHEME FOR THE SINGLE-TRAP CASE

We start this section repeating, for sake of complete-
ness, some results of Ref. [20]. As was indicated in the
Introduction, we consider the one-dimensional
A + B — B reaction. In this process, B plays the role of
an absorber (or a catalyzer) and then the system can be
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modeled by the Galanin theory [19,20]. Within this
scheme, the kinetic equation for the density N(x,t) of the
A particles can be written as

2
O Nx, =D, 2N, —yBlx —e()IN(x1) . (1)
ot ax

Here D is the diffusion of the A4 particles, ¥ is the Ga-
lanin constant which measures the reaction probability,
and €(t) indicates the (random) position of the B (trap-
ping) particle. Before discussing the procedure for solv-
ing this equation, we are going to show the connection of
Eq. (1) with the discrete master equation used in standard
simulations.

A. Connection with simulations

The master equation corresponding to the process
A +B — B, for a B particle fixed in a given lattice point
(for instance, the origin) and A particles (indicated by the
index a) doing a random walk on a one-dimensional lat-
tice (with sites indicated by the index n), and with a reac-
tion (absorption) rate 8 each time one of them meets the
B particle, is given by

d

— P, ,()=AP

” (£)+AP,, 1 (0)

a,n—1
—(2A+B8,,0)Pg (1), )

where P, ,(¢) indicates the probability density of finding
the ath A particle at site n and at time ¢, and A is the
jump probability. Then, the probability of absorption of
an A particle arriving at the origin (where the B particle
is located) is p =B(2A+B)~!. This means that 8—0 cor-
responds to no absorption while 83— w(p—1) corre-
sponds to perfect absorption. In order to consider the
continuous limit we make the distance between adjacent
sites A go to zero in such a way that x =n A, thus obtain-
ing from Eq. (2)

) _ 32
—Pa(x>t)—DA—a T Po(x,8)—y8(x)P,(x,1), (3)
X

ot
where
D,= i AL, y= i AB,
RNy v=, lm AB
S
8(x)= lim —> .
A—

This limit is exact and could be analyzed from the
point of view of the absorption. It is clear that
p~D 'yA—0, indicating weak absorption. Let us con-
sider, however, the meaning of the limit ¥y — . For in-
stance, if y — c as DA™, we have the limit p =1, corre-
sponding to perfect absorption. This aspect is clearly

|

Alx,t)={(8(x —e(t))N(x,t))

seen through the analysis of the solution of Eq. (3). Cal-
ling G©(x,t|x",¢') the free-diffusion propagator and x|
the initial coordinate (at t =0) of the ath A particle, we
have

P, (x,t)=GOx,t|x{,0)
—yfo'dt'G<°>(x,t|o,t')1>a<o,t') . 4)
Laplace transforming Eq. (4) we obtain
P,(0,5)=G20[x{,s)[1—yGP(0l0,5)]"!,  (5)

which, when y— oo, implies P,(0,s)=0, which is the
boundary condition of an absorbing barrier at the origin,
which corresponds to a perfect absorber [14,15,16,18(g)].
It is clear that intermediate values of ¥ (0<y < o) will
correspond to an imperfect trap, and from the point of
view of boundary conditions it corresponds to something
intermediate between an absorbing barrier (Dirichlet
boundary conditions) and no absorption or total
reflection (Neuman boundary condition). Such a case can
be described by ‘““albedo’ boundary conditions (see below)
[24,15].

Going back to Eq. (2), for the case of a moving B parti-
cle, it is enough to replace 8, o by 9, ,(, inside the equa-
tion, take the same limit as before, and obtain the Gala-
nin model as given by Eq. (1). Now n (¢) is the position of
the moving A particle at time ¢.

B. Solution of the model

The only hypothesis that is necessary to take into ac-
count in order to find a solution of Eq. (1) is the Markov
character of the process €(¢) [25]. We are interested in
calculating n(x,z)={N(x,t)), that is, the averaged par-
ticle density, where the average is taken over realizations
of e(t). Taking averages in Eq. (1) we obtain

D e,0)=D 4 Lo, 1) — A (x,1) (©)
ot ’ A axz ’ Y ’ ’
where A (x,t)={(8(x —&(t))N(x,t)). The effect of the
reactant B on A is completely specified by A(x,t); the
knowledge of this quantity makes it simple to evaluate
n(x,t). Let us consider the integral form of Eq. (1):

N(x,t)= [ " dx'Gx,t|x’,0)N(x",0)
—y [lar [7 ax'6Ox,tlx",1)
X8(x"—e(t')N(x',1') (7

N(x',0) being the initial distribution of A4 particles.
Iterating Eq. (7), multiplying by 8(x —e(¢)), and taking
averages, we find an infinite expansion whose first two
terms read

= [far [ dx'GOx,t]x",t")(8(x —e(1)))S(x",1")
0 — 00
t o t' oo
— ’ ’ " " — 8 r__ t: >
y [lde [ dxr [Tde [ dxr(8x —e(0)8(x' —e(t')
XGOx,t]x',t )G Ox',t'|x",t'")S(x",t")+ -, (8)
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where we have called S(x,t)=N(x,0)5(t). As we have
assumed that € is a Markov process, we have

(8(x—e(1))= [ " 8(x—e)P(e,)de=P(x,1)
=f_°°w W(x,t|x0,0)P(x4)dx, ,

(8(x —e(t))8(x'—e(t")))
=P(x,t;x',t")
=Wi(x,t|x',t'")

><fjwW(x',t’lxo,O)P(xo)dxo ,

(8(x —€))8(x'—e(t')8(x" —e(t")))
=P(x,t;x',t";x",t")
=W(x,tlx',t"YW(x',t'|x",t")

><f_°°w W(x",t"|x0,0)P(x,)dx,

and similarly for higher-order correlations. Here we
have used the standard notation [25] for the point and the
initial probability distribution P(x,), and W(x,t|x’,t') is
the conditional probability for the process €. Substitution
of these mean values into Eq. (8) leads us to another
(infinite) expansion which can be summed as the follow-
ing closed (exact) integral equation for A (x,1):

A= [dt [ 7 dx'GOx,t]x',1)S(x",1')
X [ 7 W(x,t]x0,0)P(x,)dx,
—y fotdt’f_wwdx’G(O)(x,t|x’,t’)
XWix,t|x",t")A(x",t') . 9)

With this result in hand, we are, in principle, able to
solve Eq. (6) for n(x,t¢). Such a solution is obtained as

nx,0)= [ “ dx'Gx,t|x",t')N(x",0)
t o0
—y [ dt' | dx'GOx,t|x",t’ ).
v [ldr [T dx'G O tlx', 1) A(x" 1)
(10)

In the following we consider some examples.

C. Examples

The cases to be considered here are the following: (i)
the trap (B) fixed and the particles ( A) mobile; (ii) the
trap mobile and the particles fixed (target problem); (iii)
both mobile. In all cases the analytical results are going
to be compared with simulations. It is worthwhile to re-
mark that all these results are exact.

1. Fixed trap

Due to the translation invariance, we assume that the
trap is fixed at the origin. As the B particle is immobile
Wi(x,t|x',t')=8(x —x’'), hence Egs. (1) and (7) reduce to
[here N(x,t)=n(x,t)]

2

) —p 9° _
an(x,t)—DA axzn(x,t) v8(x)n(x,t), (11)

nix,t)= [ dx'G(x,t|x',0)n(x",0)
—yfo’dt'f_"’ dx'GO(x,t|x",t")
X8(x"m(x',t') . (12)

Assuming a uniform initial distribution of A4,
n(x,0)=n,, and using the Gaussian form of the free
diffusion propagator, Eq. (12) reduces to

—[x%/4D 4, (t—1")]

n(x,t)=nog—y [ di'< n(0,r') . (13)

V'4wD ,(t—1t')
The use of Laplace transformation renders

o KA

n(x,p)=ny |p ' — —L— . (14
ZVDA p p1/2+ Z_

2v/' D,

By doing the inverse Laplace transform we have

n(x,t)=n, [erf

te Ix(y /2D )+ (y2/4D% )12

x| 1724 Y

d— t1/2 .
D, 2v'D,
(15)

Xerfc

When considering the limit ¥y — o, we recover the
solution for a perfect trap [26].

At this point, it is worth remembering the connection
about boundary conditions for the fixed-trap case, done
after Eq. (5). Let us look at this problem, considering an
albedo boundary condition at the origin (also called “ra-
diation” boundary conditions) [24]:

—a~n(x,t) =kn(x,t)|,—o . (16)

ox x=0

If k=0, we have Neuman boundary conditions imply-
ing total reflection; k— oo corresponds to Dirichlet
boundary conditions which imply an absorption barrier.
The case 0 <k < oo, which corresponds to albedo bound-
ary conditions, implies a partial reflection. The solution
of this problem turns out to be completely equivalent to
the previous one, if we make the identification
k=7v /(2D ,) which relates the reflection coefficient to the
reaction parameter [15].

An aspect largely studied in relation to the fixed-trap
problem is the time dependence of the nearest-neighbor
distance. It is obtained as

fox‘n(x,t)dx=1 . (17)

This turns out to be simpler to calculate in the Laplace
space as
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_ *1 Y
=n 0 - +
p 2p3? Y 4 p
2v'D,
N [ _lel/z/\/j;_l ]
(18)
Using the scaled variables and parameters,

r=y*/D,,y=yx/D,, a=2D 4n,/y, and making the
inverse Laplace transformation of Eq. (18) we find

172 )2 4r Y o_
a‘y1+ 7\-/1_76 YTy + Defre —ZLT 1/2J
+ey1/2+T/4erfc y—l'r_l/z—l- 2
4
) -1
— = —e™erfc +1i=1. (19
Vi

From this expression it is in principle possible to ob-
tain the value of y,;(x;) at all times. However, it is
simpler to look for the asymptotic behavior (that is,
7—> o0). In this long-time limit we find that
172

2 (aD ), (20)

0

X1~

a result that is coincident with the one obtained by previ-
ous authors [26]. We see that x; becomes independent of

V.
2. “Target” problem

In this case the A particles are fixed at the origin while
the B traps are mobile. Then we have that
Gx,t|x',t')=8(x—x') (or equivalently D, =0),
n(x,0)=ny6(x), and assuming a diffusive motion for the
trap,

(x—x')?
4Dg(t—1t')

W(x,t|x',t')=[4wDy(t —1t')]" 2exp

We also assume that the initial location of the trap is ran-
dom. Hence Egs. (6) and (10) take the form

9,n(t)=—yA(0,1), (21)
no

gt

A0,1)= 'yfotdt'[417DB(t—t’)]l/zﬂ(O,t') ,

(22)
and the solution for n(t) is (r=y2t /Dy, a=2Dgny/y)
n(r)=nge™ erfc(Lr'/?) . (23)

At long times it reduces to

n(r>>1)~2$—3¢—1/2 . 24)

o
The asymptotic behavior has the known 7 !/2 depen-
dence.

3. Both particles mobile

In this case we consider that both particles move
diffusively. We will assume that both particles are initial-
ly located at the origin. In this case we have to use the
full form of Egs. (6) and (10). The result for the absorp-
tion function A (x-¢) is

Alx,t)=n L o
’ 4D, +Dy) VanB
X l%——ae“z'erfc(a\/? ) ] s (25)
Vit

where a=y /V/8(D 4+ Dj), n, the initial number of par-
ticles, and D 4, and Dy the diffusion constants of 4 and B
particles, respectively. The global (integrated over x)
evolution of the number of A4 particles is given by

n(t)=ngyelerfc(aV’s ) , (26)

which gives, in the asymptotic (long-time) regime,

n(t) ~ 294-12 27)

t—>o0o A

as could be expected.

III. SEVERAL-TRAPS CASE

So far we have considered the effect of only one trap
(or B particle). It is clear that in the more interesting
case of considering simultaneously several B particles, we
will find different dynamics in the A4 particle density.
The combined effects of diffusion and absorption by each
B particle cause a depression in the A4 particle density ex-
tended in space. Each depression will influence other B
particles close to the one that has caused it (affecting not
their dynamics but A’s, since the net absorption is pro-
portional to the A particle density). Assume, for exam-
ple, that there are only two B particles, initially far away
from each other (i.e., the integral of the A particle densi-
ty between both positions is larger than one, indicating
the presence of several A particles between them). There
is an initial transient period (its duration depending on
the diffusion coefficients and the reaction rate) during
which we could consider the effect of each B particle as
independent from the others’. After some time has
elapsed, the depression in the A particle density caused
by one of the B particles influence the other, and vice ver-
sa. At this time we are no longer allowed to consider the
B particles as independent, and it is necessary to resort to
more elaborate schemes, appropriate to describe a dense
B system and the interference effects referred to above.
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In order to consider this case we extend the Galanin
model introduced in Eq. (1) in the following form:

2
—a—N(x,t)=DA5Q—

M
o SN(x,t)—y 3 8(x —¢;(1))N(x,t),
X

j=1
(28)
where we have considered that there are M of the B parti-

cles randomly distributed in the volume V. The integral
form of this equation corresponding to Eq. (8) is

M M
3 8(x —€;(1)IN(x,1)="38(x —¢€,(¢))G'V(x,1]x,,0)

i=1

N(x,t)=GO(x,t|x,,0)

M t
—r 3 [ dr¢Ox,tlx’1)

i=1
X8(x'—¢€;(t"))N(x',t") . (29)

Here, in order to simplify the notation, we have con-
sidered only one A particle initially located at x,. The
extension to a larger number of A particles is trivial.
Multiplying Eq. 29) by 3 ,8(x —¢;(2)) and iterating,
we get

M 0
—yZS(x—fi(I))fotdhf dx G O(x,t]x,t)8(x, —€;(1,))G x,t]x4,0)+ - - - . (30)
ij et

In order to simplify the notation, we rewrite this equation in a shorthand notation:

i=1 i=1

M M M
> 6(x —€;(t)N(x,t)= T, Si(x)Gxxo——yZSi(x)GxﬁSj(xl)G
l’]

X1%o

M
12 3 8:(x )Gy 8;(x1)Gy 1, Bi(x1)Grpey + 7 (31)

Ljk

where we denote by x; the pair (x;,?;), x; indicates integration over the pair (x;,¢;) for all functions containing these
variables, and G, .= GOx,t|x',t"). Equation (31) can be rewritten in a more compact notation as

M M M
28(x—e,-(t))N(x,t)T T(x,x0)~y > Ti(x,x)T;(x1,x0)+y*> 3

Ti(x,x)T;(x,%x5)T)(x5,x0)+ ==+, (32)

=1 ij i j k(i j7k)
(i)
where
T:(x,x")=Tix,t|x',t")
=3 (—y)"*la,.(x)Gxx_ls,.(xl)leﬁ~ o 8i(x, )G, o (33)

n=1

In Eq. (33) we have summed up over equal indices.

At this point, as we have done before, we must average over the realizations of B particle trajectories, keeping in
mind the assumption that the process € is Markovian. We also need to average over initial conditions considering the
limits M — o and ¥V — o in such a way that ngy =M /V =const. Calling as before A (x,?) the (averaged) absorption

function, we obtain

Ax,0)=ngTx,x0)—ynj T0e,x )T (x1,%0)+ 72700, x )T (x 1, %) T(x5,x0)[n3 +np Wix,,x,)]

=37, x )T (x4, %) T (x5, %3) T (x3,%0)

X{ng+nd[Wix ,x,)+Wi(xy,x3)+Wi(x,x3)]+ngW(x,x,) ) Wixy,x3)}+ -, (34)

where
?(x;x,)= 2 (_1’)nﬁ1Gxlexx_1 xlelex_z

n=1 -

X...G W

Xp—2%p —1 Xn—2Xn—1" *n—1

o (35

and the short notation G, ,- also holds for W, ... Now,
since G, ,- and W, ,. are only dependent on the difference
of their arguments G,_,. and W, we make a

x—x'

[

Fourier-Laplace transform. For those terms which do

not contain W, _, , this is trivial as they have a convolut-
15008 ]

ed form. However, the other cases present much

difficulty. What results is

Ak,p)=npT(k,p)—yn3T(k,p)+y*ngT(k,p)*— -+
+y* Iy T(k,p Y+ - - +y2n3Ts (k,p)
—¥3np[3T \(k,p)+ Ty, (kp)]+ -+, (36)
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where
T(k,p)=G%k,p)[1+yGW(k,p)]" !, (37)

with GW (k,p) defined as the Laplace-Fourier transform
of G,W,, which is coincident with the one-B-particle
contribution, and the meaning of T;,(k,p), T4,(k,p),
T,,(k,p),..., is clear. [For example, T, (k,p)
=T(k,p)*W(k,p)'.] If we neglect higher-order contribu-
tions in Eq. (36), we recover the dilute approximation
corresponding to only one B particle. However, it is pos-
sible to sum up all the contributions of the form
y* " ngT(k,p)Y, rendering

ngT(k,p)

.)fl(k,P)=——-—l+ynB T(kp)

+y*ny Ty, (k,p)+ -+ . (38)

The first term becomes a manageable approximation
for dense systems. The rest of the (crossed) terms
represent a much more difficult problem, which we will
not consider here. Then as our approximation for dense
systems we will adopt the form

_ Tlep) (39)

Alk,p)~np 1+ynsT(k,p)

The naive approximation of assuming that
A(k,p)~ngT(k,p), corresponding to the dilute system,
will be valid as long as yngT(0,p) <<1, which gives us a
time scale during which such a naive approximation will
be valid. Taking into account the above indicated ap-
proximation of A (k,p) for dense B systems [Eq. (39)], we
get the following result for the global (k =0) dependence
of the A4 density:

Yo y?

na )= 16n(D, + Dy)
-172 sy
Y e T —
Bl v Im’ s, erfc(—S V't )] , (40)
where
S, =Y
Y V@D, +Dy)
172
72 o @1)
T l16m(D,+Dy) V2r
In the long-time limit we find that n ,(#)~¢ "~ 172 as could

be expected, in agreement with previous results.

IV. COMPARISON WITH SIMULATIONS

As a test of the results found in the preceding sections
within this Galanin-like model we have compared them
with several simulations.

Simulations are carried out in a one-dimensional net-
work where particles jump to their neighbor site with a
probability P£® (4 or B for A or B particles, + to the
right, — to the left). When two particles 4 and B are
coincident on the same site we consider a probability
P ,ps to react; in such a case the A particle disappears.
In one time step all particles are updated with the above-

1.0 T

09 | ST~

08 | - TS
~

> ~. ~
a‘ 07 | N B ~
~ N
5 N
o 06 a z\\ A b
° .
3 S
Doos | N N
5 Ao
a, N
) > )
N
< o4 i

03 . S T el
10-2

101 . 100 10t
time (arb. units)

FIG. 1. Probability of survival of one 4 particle and one trap
placed at the origin at t=0. The parameters are A=0.01,
z=0.001, D ,=y=1. The dashed lines show the result of the
simulation done for 1000 realizations. The dotted lines show
the theoretical result of Eq. (23). (a) Dz =0; (b) Dy =1.

mentioned processes and probabilities. Then, simulation
of the master equation (2) is accomplished by taking z as
the time between steps, t =rnz as the time of the nth step,
P{=)\z, and P zs=pz. Taking into account the con-
tinuous limit from Eq. (2) to Eq. (3) as explained in Sec.
III, we conclude that simulations of Galanin equations
can be performed doing the above-mentioned processes
with PA8=D ./A>and P ,ps=7z/A.

In Fig. 1 we plot the probability of survival
n 4(t)/n 4(0) in the case of only one particle 4 and B
placed at the origin at t=0. We have taken as values of
parameters A=0.01, z=0.001, and D, =y =1 and we
have done 1000 realizations. Simulations are compared
with the analytical results of Eq. (23). As expected, both
results are in a very good agreement for all times. In fact
they must coincide in the limits z—0, and A—0 since
Eq. (23) is an exact result. Figure 2 is the same for a case

A-particle density
Ve

102 101 . 100
time (arb. units)

FIG. 2. Probability of survival n 4(¢)/n 4(0) for a uniformly
distributed set of B particles and the A4 particle initially at the
origin. The parameters are the same as in Fig. 1. The dotted
lines show the theoretical result of Eq. 40. (a) Dz=0; (b)
Dp=1.
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100 [t o s et ot s el s e S e e e ]
e e ¢

A-particle density
2
/

ol " L

10! 101

. 100
time (arb. units)

FIG. 3. The same system as that shown in Fig. 2, but for
different densities of B particles. (a) ng=1; (b) ny=0.1; (¢)
ng=0.01.

of many trapping particles. We consider a uniformly dis-
tributed set of B particles with only one A particle placed
at the origin as an initial condition. Simulations and

analytical results given by Eq. (40) are in good agreement

for short and intermediate times. For long times
differences are mainly due to two reasons. On one hand,
our approximation for dense systems is more sensitive at
long times. On the other hand, simulations are also more
imprecise. Finally, in Fig. 3 we show results for systems
with different densities of B particles.

V. CONCLUSIONS

In the present work we have introduced an alternative
and flexible scheme to study diffusion-limited reactions.
This scheme, which is based on the Galanin model for
neutron-diffusion problems, was shown to have several
interesting features: it is the continuous limit of the corre-
sponding master equation employed in simulations; it in-
cludes the possibility of imperfect reactions; and it offers
the possibility of getting analytic (exact or approximate)
results covering the whole time range. We have focused
on the A4 + B -— B reaction in one dimension in order to
use it as a benchmark for the model. Initially we have
considered the case of only one B particle, discussing

cases where only one of the species ( 4 or B) moves (trap-
ping or target problems), as well as the case when both
species are mobile. The comparison with the simulations
shows rather satisfactory agreement, supporting the
goodness of the model. Among others, for the trapping
case, we have recovered results for nearest-neighbor dis-
tances obtained by others authors [14]. However, we
were able to include the effect of imperfect trapping, con-
necting it with special boundary conditions. In the case
of dense B systems we have obtained approximate expres-
sions also in good agreement with simulations.

There are several directions in which we can extend the
present scheme

(i) Include source terms, adequately introducing them
in the master equation.

(ii) Consider higher-dimensional situations. For in-
stance, this can be done by changing the reaction terms
to include the finite size of the particles in order to avoid
divergences.

(iii) Consider other kinds of problems, for instance, the
dynamics of reaction fronts [27], by considering as the in-
itial condition two semispaces with 4 and B particles, re-
spectively. We could also consider reactions in finite sys-
tems, imposing adequate boundary conditions.

(iv) Discuss other kind of reactions. Of particular in-
terest are the cases A + 4—0 and 4 +B—0. In such
situations the model must be rewritten as a self-consistent
equation, or as a set of coupled equations, for the particle
densities.

All these points are the subject of further work and will
be discussed elsewhere [28].
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